Autonomous Underwater Vehicle Systems
نویسنده
چکیده
To understand the physical and biological relationships often requires high resolution sampling far exceeding present capabilities. If spatially adaptive sampling can be developed, data resolution can be greatly improved over that presently possible with conventional sensor platforms. One technique to achieve both spatially and temporally adaptive sampling is an Autonomous Oceanographic Sampling Network (AOSN). The purpose of the network is to provide a technique for spatially adaptive sampling capable of resolving evolving gradients with sparsely distributed sensors. Each network consists of a base buoy and a number of Autonomous Underwater Vehicles (AUVs) at fixed levels. The base buoy serves as a navigation beacon, energy source, telemetry link and surface sensor platform. Each AUV functions as a subsurface sensor platform, short term data logger and programmable, navigable vessel. The long term goal is to develop a suitable AUV to operate in the AOSN.
منابع مشابه
Design of Robust Finite-Time Nonlinear Controllers for a 6-DOF Autonomous Underwater Vehicle for Path Tracking Objective
In this paper, kinematic and dynamic equations of a 6-DOF (Degrees Of Freedom) autonomous underwater vehicle (6-DOF AUV) are introduced and described completely. By developing the nonsingular terminal sliding mode control method, three separate groups of control inputs are proposed for the autonomous underwater vehicle subjected to uncertainties including parametric uncertainties, unmodeled dyn...
متن کاملIdentification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model
In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...
متن کاملOPTIMIZED FUZZY CONTROL DESIGN OF AN AUTONOMOUS UNDERWATER VEHICLE
In this study, the roll, yaw and depth fuzzy control of an Au- tonomous Underwater Vehicle (AUV) are addressed. Yaw and roll angles are regulated only using their errors and rates, but due to the complexity of depth dynamic channel, additional pitch rate quantity is used to improve the depth loop performance. The discussed AUV has four aps at the rear of the vehicle as actuators. Two rule bases...
متن کاملAutonomous Underwater Vehicle Hull Geometry Optimization Using a Multi-objective Algorithm Approach
Abstarct In this paper, a new approach to optimize an Autonomous Underwater Vehicle (AUV) hull geometry is presented. Using this methode, the nose and tail of an underwater vehicle are designed, such that their length constraints due to the arrangement of different components in the AUV body are properly addressed. In the current study, an optimal design for the body profile of a torpedo-shaped...
متن کاملDesign and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملInvestigation on Nose and Tail Shape Effects on Hydrodynamic Parameters in Autonomous Underwater Vehicles
Development of autonomous underwater vehicles (AUVs) which meets the design constraints and provides the best hydrodynamic performance is really an important challenge in the field of hydrodynamics. In this paper a new profile is used for designing the hull of AUVs. The nose and tail profiles of an AUV using presented profile is designed such that it can properly consider the length constraints...
متن کامل